SCMA 259 - Linear Algebra J. D. Sands
Inner Product Spaces (Part II)

Conceptual knowledge
e Understand various contexts of orthogonal and orthonormal.
e See applications in other areas of mathematics of orthogonal sets.
e Understand how least squares is applied.
Procedural knowledge
e Determining whether a set of vectors forms an orthonormal basis or not.

Find coordinates relative to orthonormal bases.

Perform Gram-Schmidt orthonormalisation.

Solve least squares problems.

Find projections of vectors onto subspaces.

1 Orthonormal Bases

1.1 Fundamentals

Definition

Vectors in an inner product space are orthogonal if their inner prod-
uct is 0.

If the vectors are also unit vectors then we call them orthonormal.

A set of vectors in an inner product space is orthogonal if all vectors are
mutually orthogonal. In other words all pairs of vectors are orthogonal
pairs.

An orthogonal set of vectors consisting of unit vectors is called orthonormal.

If the set of orthonormal vectors is a basis we call it an orthonormal basis.

An orthogonal matriz is a matrix whose rows are made from orthonormal
vectors.




Example 1.1
Show that the matriz whose rows are the standard basis vectors in R* R3, with the
FEulcidean inner product, is an orthogonal matriz.
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Let’s look at an example of an orthonormal basis that is non-standard.

Example 1.2
Verify that the following set is an orthonormal basis for R3 and describe what the

basis looks like. -
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S = {(cosb,sinb,0), (—sinb, cosh,0),(0,0,1)}
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The next example will provide the background to some of our assumptions regard-
ing the derivation of Fourier series.

Example 1.3
Define the inner product for C|—L, L] to be,
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with L € R. Show that the following set is orthogonal.
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@Note that the set is orthogonal but not orthonormal.

It is possible to make an orthonormal set by dividing each term by its respectlve
norm.
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we can make the set orthonormal:
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1.2 Linear Independence

We will now show that orthogonal sets are always linearly independent.

Theorem

An orthogonal set of non-zero vectors, S = {v1, va, ..., Vn }, is linearly indepen-
dent.
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This means that any orthogonal set containing n non-zero vectors is a basis for an
inner product space of dimension, n.

We can now use this result to test for bases.

Example 1.4
Is the following set a basis for R4 with the standard Eulcidean inner product?

S =1{(2,3,2,-2),(1,0,0,1),(-1,0,2,1), (—1,2,—1,1)}



Our usual method would involve checking linear independence by forming a matrix
then using row reduction. Now we can simply check orthogonality.
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1.3 Coordinates with Orthonormal Bases

One of the advantages of using an orthonormal basis is that we can easily derive
a formula for the coordinates of any vector with respect to that basis.

Say we have have an orthonormal basis, B = {vi1,Va,,...,va}, for some inner
product space, V', and we want to represent any vector, w € V', using the basis.

In other words, we are looking for the coordinates, ¢;, of w relative to each v;
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and utilise orthogonahty
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Since we also have that the vectors are orthonormal then,
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So to get the coordinates we just take the inner product with the respective basis
vector.

We call these coordinates Fourier coefficients of w relative to B.




Theorem

The coordinates of a vector, w, in an inner product space, V, with re-
spect to the orthonormal basis, B = {vi,va,,...,vn}, are given by the

Fourier coefficients:
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Example 1.5
Find the coordinates of w = (5, —5,2) relative to the orthonormal basis for R3,
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1.4 Gram-Schmidt Orthonormalisation

Since orthonormal bases are useful in terms of their coordinate representation, we
now develop a process which turns a general basis of an inner product space into

an orthonormal one.



Let’s start with a general basis in R?, {vy,va}. Starting with the first vector, v,
we can find an orthogonal vector using projections.
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projy v

Flgure 1: Orthogonal vector from pI‘OJGCthIl in R? © Pearson, 2016
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To make it orthonormal we can just divide each vector by their respective norms.

Let’s check that w; and wy are really orthogonal:
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Noticing how the inner product can be split into two parts that cancel out with
each other suggests a nested type pattern that will all us to make third vector
orthogonal to both w; and wa.

Imagine that we had started with a general basis in R?, {v1,va,vs}, and we
labelled w; = v; and found an orthogonal vector, wa = projy, va as before.

Following the pattern we can define,
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I will leave it to you to verify that ws is orthogonal to both of the other vectors.

This leads us to the following generalisation.

Definition

Given a general basis, B = {vi,Va,..vn}, for an inner product space,
V', we obtain an orthogonal basis, B’ = {w1, wa,...wy }, using the formula,
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The process of  going from B to . B’ is called
Gram-Schmidt orthonormalisation.

Example 1.6
Find an orthonormal basis spanning the same inner product space as the following

general basis for R? with the standard Euclidean inner product.
Y Vo Vs
B =1{(1,1,0),(1,2,0),(0,1,2)}

,)/': y,)/"— \-Z'L .—., \/\/’ [’)(2 0)—- =~ II)O) ["7__/ /0)

_
\I\f",/
-1

—”\/ \/\W’ \/‘VV'

- v v A - 1 W
____i.ﬁ,..vy, 2 -
W," W IW



wll=Jz, Ivl=z, 1%0=2
L" g‘_—: J’(' 00), f(%, 1 ) (‘9/‘9/))}

N orbhon ormal baf(:f’

Note: It is also possible to normalise the vectors in the general basis first, before
using the formulas. The denominator in the sum formula would not be necessary
since it is the norm, which for a unit vector is equal to 1.

2 Orthogonal Subspaces

We will now develop some ideas which can help us to find best possible solutions
to inconsistent systems.

Definition

Two subspaces of R", S; and S, are orthogonal if every combination
of a vector from S; with a vector from S5 results in an orthogonal pair.

Example 2.1
Are the following subspaces orthogonal?

Sy = Span{(1,0,1),(1,1,00}, Sy = Span{(—1,1,1)}
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The only vector in both subspaces is the zero vector, which is generally true for
orthogonal subspaces.



Definition

If S is a subspace of R" then the orthogonal complement is,
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Example 2.2
Find the orthogonal complement of the subspace spanned by the columns of the

following matriz.
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Definition

The direct sum of 2 subspaces of R", S; and Sy, is written as,
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if every vector, z € R", can be written as a unique sum of a vector in S; and
a vector in Ss.
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We have that,
1. dim(S)+ dim(S*) = n.
2. R" =S¢ St

3. (SH)L=5.

Definition

Given a subspace of R™ with its orthogonal complement, a vector, v € R" can
be written as,
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where we call v = projgv the projection of v onto the subspace, S.

Note that v — projgv is orthogonal to S.

Consider this definition with the subspaces that are the Cartesian axes for R*:
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Now say we have an orthonormal basis, {uj, uz, ..., up}, for a subspace, S, of R".
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which leads us to the following formula for calculating the projection of a vector
onto a subspace:
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v, &5
If {uy, us,...,up} is an orthonormal basis for the subspace, S, of R", then,
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Example 2.3
Find the projection of v = (1,1,3) onto the subspace, S, of R3 spanned by wi =
(0,3,1) and we = (2,0, O)
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Remember that orthogonal projections represent shortest distance.
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Figure 2: Orthogonal projections as shortest distance © Pearson, 2016. &

Before we do the last part let us define the fundamental subspaces of a matri
as the null spaces and column spaces of the matrix and its transpose (Nul(A),
Nul(AT), Col(A), Col(AT)).

——

We have that for an m x n matrix, A:
1. Col(A) and Nul(AT) are orthogonal subspaces of R™.
2. Col(AT) and Nul(A) are orthogonal subspaces of R".
3. Col(A) ® Nul(AT) =R™.
4. Col(AT) ® Nul(A) =R™
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2.1 Least Squares

The method of least squares is used to get a best fit solution to an inconsistent
system.

Say we plot 3 points (1,0), (2,1) and (3,3). Is there a straight line, y = az + b,
& =) M= e

—

that best fits the plot:

Figure 3: Fitting a line to points.

If the points are collinear (lying on the same line) then the following system
(from the equation) would be consistent:
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Since they are not collinear the system is inconsistent so we try to find the line
such that the norm of the error is minimised.
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Recall that allE ‘that satisfy Ax = b* are in the column space of A.
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Our b is not but we require that,
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To minimise the distance we take the projection of b onto C'ol(A).
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This results in the system required to solve the least squares problem.
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Let’s now apply this to find our best fit:
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