SCMA 259 - Linear Algebra J. D. Sands

Vector Spaces (Part I)

Conceptual knowledge
o Revise vector spaces, subspaces, span and linear independence.
o Understand null spaces, row/column spaces and bases.
Procedural knowledge
o Determine whether a set of vectors forms a vector space/subspace or not.
o Find spanning sets. ?mc Lice 1 b( e
o Determine whether a vector is part of a given null/row/column space.

o Determine linear independence/dependence of vectors and writing vectors
as a linear combination.

o Find bases of vector spaces.

(/\)&X’t wel k)

1 Vector Spaces

Vectors are encountered frequently in science and engineering.

Quite often a set of vectors which share certain properties arise, allowing us to do
useful mathematics when analysing systems.

The fundamental type of sets of vectors that we will now explore is vector spaces.

You have already seen vector spaces in _%e’ogeil_y and Fourier analysis. We now
formalise these underlying structures and subject them to analysis in their own

right.

Definition

A wvector space is a nonempty set, V, of objects, called vectors, on
which are defined two operations, called addition and multiplication by scalars
(real numbers), subject to the ten axioms (or rules) listed below. The axioms
must hold for all vectors u, v, and w in V and for all scalars c and d. /[\

“rule
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1) Closed under addition: (u+v) € V.

2) Commutative under addition: u+v=v-+u

3) Associative under addition: (u+v)+w=u+ (v+w)
% Jx ; W\
Additional identity: 0 € V, such that u+0 = u /Ad Ative et If?

5) Additional.inverse: Yu € V' 3(—u), such that u+ ( =0 //Aﬂdt‘é Ve Mv'erfé’
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6) Closed under scalar multiplication: cu € V.
7) Distributive under vector addition: c(u+v) = cu+cv
8) Distributive under scalar addition: (¢ + d)u =eu—tew CY + d 1%
9) Associative under scalar multiplication: c¢(du) = (cd)u '

)

10) Multiplicative identity: lu=u

(

Example 1.1 Ob,w (/{7'f

The set of vectors, v € R", where n is a finite, positive number, along with vector
i@y’o_@ and sgzlar multiplication is a vector space. : Opm%‘w

]

We can verify this by going through the list of axioms and using the definition of
a vector and the properties of real numbers.

For example let us look at axioms 1 and 4.

) Clwed onder odiction’ Lo, v.=(0).,%)
V= (\/’/ Y, "‘)Vn)

=

.Q."H./_: (Ul/u‘l, m/on } +( v.l/v'l/ et V”)
:( V“l’v(l U'L“’V’L/ lre ) Un"’\/l))

(Ve +v, ) eR VLGD/I\]/
=D(U+V)
La W, 0= (0/0/ 1y 0) ) we h‘we/
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Example 1.2 OLVL(“()W O?WW

The set of all 2 X 3 matrices, Msz, with matriz addition and scalar multiplication
‘, SOOGT TGO ICOEL R,

a——

1S a vector space.

7 A ) £6)
Ld?/ é’::(all A 0,3)/£:(£,, Lﬂ 5,3

Ay  dya Arz | AZ’Z by
YVik 0= (7 00) el

0 © o
A_,, 0 pr (a“‘FO dq +© a3+0) _/ﬂ‘ \/

Ao 46  Qaat0 @310
é) Let ¢ €R,

014‘— c (fn da Qg ) (Cdn Cap Clg
(ar” qezq_ a’t} ca’l' Ca’l'l. a«

ER Vceld,re0,3]
;‘1 CA € /Mg \// SC,

Similarly all m x n rectangular and n X n square matrices are vector spaces.

\

Example 1.3
The set of all polynomials to the n
plication defined as follows:

V(j()z A +4, > +:p +anxn) (,L{Z):bof. b,y-}—,., 'anxn
V(]) +a,[;(,) — [a,,J,b‘),l-[a,#, )x + +(a,,4bn):(;’

CY(?() = qu-l' Calf'{'av!‘l' Can:(n

th degree or less, P,, with addition and multi-

The axioms can be shown to hold for these polynomials using the properties of
real numbers.
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For example consider axiom 7: ]

C{ g+ 4)= [ oth) Hashy o+t lbih)
= (_Cdo + Ca; x +iu+ Canj")+(clb+c£,1+,,,+dnx

= cplx) + cylx) yd
ote,

The set of all real-valued continuous functions over the real line, C(—o0, 00), with
addition and multiplication defined as follows:
¢ /i J Ob)‘«ecér

/43+-})(x) = Llx)+ 412 OPW

(c$)) = cE@(ac)}

Closure under addition and multiplication is easy to show using properties of
continuous functions on the real line (from basic calculus).

In order to satisfy axiom 4 we must define the additional identity as,
Llx)=0 ¥x |
5 [F 1)) = D) +Ebo= flato= Fio)-

The other axioms follow from the properties of continuous functions.

The above examples are commonly occurring vector spaces. Let’s now look at
. . ’_/—/__—_&-
some examples of things which are not vector spaces.

Example 1.5
The set of integers, Z, with standard addition and multiplication is not a vector

§) cu ev? ! c.-:‘/ffffu:’ézc B
¢ : ounTCor=Lx
Ty =L ¢7 (Co

" Nk Clorad onder scalyr mol bighcats
| L), wh Vet spdce,



Example 1.6
The set of polynomials of ezactly degree 2 with operations defined similarly to

Ezample 1.35.

P’:u ; l) Closed ondor addibion!  900) = °
— (%) = — 4L +]

=) F"‘H‘i,(")“ cad ¢ 7 (dogree )
;'. NO.6 C(Wfd (/Aﬂlor‘add((('éltoﬂ,',no’{'d l/eﬁéw‘

Space

4

1.1 Subspaces

Definition

A subspace of a vector space, V, is a subset, H, of V' that has the
following 3 properties:

/a) The zero vector of V is in H.

(/_i)) ut+visin H. Closed U}\d«ﬁ/‘ aM((él(m d/hd SZa//ﬂf'
mv ['é;?(t%fa'{f )

c) cu is in H for all scalars, ¢, and vectors u in H.

In other words the subset must be closed under addition and scalar multiplication,
containing the zero vector.

In fact if we can show b) and c) is true then a) is automatically satisfied since we
can choose ¢ = 0 so that cu = 0.

Example 1.7 Cgmfﬂfe (/Ul(‘l}’ CQ7
Lines through the origin are subspaces of R? or R3. W Trac‘ét‘Ce Pﬂ)/uwm 1
w

Y

Figure 1: Lines through the origin closed under addition and scalar multiplication
© Wiley, 2013.



Example 1.8

Let W be the set of symmetric 2 x 2 matrices with the standard operations. Is W
a subspace?

C
=) My b a verbr Space,
=) S?'Inmd?m’c Lxr matrices are a sobset of Moz,

(VY /’)Q,‘L A, Aq b b || /2, 43 C b by
\) Clezd ondor add i o ! (a} M) (*’J ‘%) é"l ZTJf)b, Kb;;; J
- thb'l ‘(L(/U'q/)

___( f{/‘b a'l'l/b’l,
4 1b3 a‘#"'}’(#)

(’4 y B) =4 WT-'(_,H 6\/\//
) Cluged ondte scaly moltiicaion,
ca)'=clp)= )=l e

JoW o & subgpace,

Example 1.9
Let W be the set of singular 2 X 2 matrices with the standard operations. Is W a
subspace? T Aik=0

)Lk, A=, ),g (g ,0) Beb Svgulac
-ﬁ‘*ﬁ:(( 0) ) B8]0 . ivaible,

o |

( NJ% M m aﬂ'ﬁ/{'él‘m

‘I‘ /\/o’(? a j‘ubfpace.. >
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Example 1.10
Which of the following subsets is a subspace of R??

—
2 w+2y=1 (q”%) (:11)91)
l) Alddlg ', o, +%, =0, oy + W= O
(Fte, 4,4,) =D (= +) + 20y, +9,)
= [, +24) +{xt2 Fy)=0
A\U (}éc‘Y(;Ca?lt'm! (
o C'f:/ Cg*;):‘) CJ(, -(—’Z,C%

, = C (= +24)= C/D}ZO//
A R Y ) JuLJpace/

=

‘L) (D(l "LD("/ 91 'fg'i) =7 (Z/‘TLU{Z) J’ngl "L%’L)
=[x +24,)+ [ +2)=1+1=2
J\fa"b clopd under addidien | <

(it a Subspace.

Alternatively, for the second case we could have also just observed that the zero
vector is not in the subset and therefore cannot be a subspace.

1.2 Linear Independence & Spanning Sets

Definition

A set of vectors, {vi,Va,...,Vp}, in R" is linearly independent if,
P Yy 4
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OC,\,/,-J—afzy,vam 'f'&f?y?::_q_

has only the trivial solution. (édne,;r(g (‘n deo P d M{D)
185 ony the wnvia sonon.

Tt is linearly dependent if there exist values of z1 = c1, T3 = ¢y, ..., Tp = ¢p,
not all zero, such that the above equation holds.

The values ¢, ¢y, ..., ¢p are the weights of each vector and the sum is known as
a linear combz’nation.@ -

It is common to say that the vectors, v, ..., vp, are linearly independent when the
set of those vectors is linearly independent.

Example 1.11
Is the following set of vectors linearly independent?

)2)7 (107 _5)}
1 4

S ={(1,3,1), (0,1
et v
(

Vv, LS (§nas, cmbfn;‘b‘m of V, and Vg
v, = 3y, + Y = 3(0,0) 4 (1,0,5)
( :(1/311):\’/'

Sometimes, as in the last example, we can see from inspection whether the vectors
can be written as a linear combination of the others or not.

A more robust method is to use Gauss-Jordan elimination.

Example 1.12
Is the following set of vectors linearly independent?

S ={(1,2,3),(0,1,2),(-1,0,1)}
For linear independence we require,

. ( 0\ . [-] |\ —
K-Olll(/bre, C,[q_) + Ca ( + 3l o Q
2
3 U7 only has Eoivial

8 Solo thon ‘




This can be written as a system of linear equations and solved as follows:
[l o0 —)] o0 |l 06 —=1]0
T ool ™Mlg | o]0
3 - 110 G 4~ Y10
N(é (l) ;’/g —) N fo(utfonj
\ /
0 o O 0 ‘ L((I\ W(g, A,@f;é{) den f

)
J’/V_

Example 1.13
Can the vector (1,1,1) be written as a linear combination of the vectors in S from
the previous example? If so, find the coefficients.

SRR
31 7[7)‘ (owlt)

o Ca iy Fr.ee -vam‘#]ﬂu.
Co=— | —Tc3
Cl — l + CZ

O\ — [1+c ) ’
)= (53 = [ o
(53 (‘63“3> (o |

CheeK'. Fr wamle £ Cg=|=) (=2 C.=-3

)543 ()
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Note that any set of vectors which has more vectors than entries in each vector
is linearly dependent since the resulting homogeneous system will always have
a free variable.

Definition

Given a set of vectors, {Vl,V2,...,vp}, in R",- the span of the set is the
collection of all ljnear combinations of those vectors denoted by,

S {1t = 4

where the ¢;, i € [1,p], are scalars.

Example 1.14
Is (—3,8,1) in Span{(1,-2,3),(5,—13,—3)}?

_3
Cl(l’l>+ C’L[—-{B): 3 ?
g -3 [

¢ |23
A _,'% ,59 NS o =3 q
=g 1o
O( Yl ; /’?j:nCmflJ’(?Wt;,ﬂo 50[ € on
0 U —2’ ' [’; Y, M‘& e j‘,Mn
| e

Example 1.15
Determine whether the following sets span R or not.

1. 51 =4(1,2,3),(0,1,2),(=2,0,1)} -
2. 8, =1{(1,2,3),(0,1,2),(=1,0,1)}
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’ —1| Vv l 0 -7 M
1 o sz N/ o | L,, V-
3 7 ’ 3 0 ’L’_ W4 V;’N
Y | o —L:— vvl 2V — Unfque Silotion
D’ \ LT &Y 3
Vv,
0 \ o — \/3 -tL\lZ"'I « . ‘S\' .Y(W R
1 o |V | 0 —1) V
Q~) vl oflvy |[™]o | 2 |-
37 ||V 0 7 Y% |V3-3v
v L o =]V =) 0"(% salotior WM
5 | Vo —LV, \/3 —wW,+V = 3
0 0 0 (V3=2vu+Y| U foes nét Spo I,

Stms_a_ glame,$ 3

Note that all spanning sets are subspaces by definition.

Definition

basis for V if,

1. S spans V.

2. S is linearly independent.

A set of vectors, S = {vi,va,..vp}, in a vector space, V, is called a

The plural of basis is bases (say “bay-sees”).

Examplé 1.16
Show that S = {(1,0,0),(0,1,0), (0,0,1)} 4s a basis for R3.

11







Chedi 6 sppns & oed  Lnasly indepmndent,
o Vi ,
(; ( c? Va :-—""——> ggw ng ‘\ Um'q/ue fo(uﬂ(m
0 0 | VZ

| 00 — No solwioo @kCeF‘L trovial Splothoy
( 6 0 \ 0)
o 0 |

L' v abww f'“’)?

This particular basis is known as the standard basis for R3.

Analagous standard basis can be defined similarly for other dimensions.

Example 1.17 : ’ .
Show that S = {(1,1), (1,—1)} 4s a non-standard basis for R2. (S{W ({’,o)/(ﬁ//'

% I
(| 1)~ (5 aluly) =ompe sbt
Y Spwes ]l ﬂz

PN |
(-1 1° 01| 0)=) 0/\(9, f/‘l\llﬂl Solytion
|, [.,(néo/{% fn/{«éfzndﬁe,é

S oa b o B

g}z{;ﬁiﬁ tlhel iet of polynomials of degree 8 has a basis,

S ={1,z, 2%, 2%}
th‘ 5’ C + Co ¢ C;( x*t +Cl(_13
W‘\:C)‘ \-f alf'o 'U\.Q o{e ol m of ? Aé@rzee Po[wwm

S O Plra fg%,

e
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But linear independence requires,
C, 4 ¢ x + 65" e 2= 0O
TM 0\'1%— :r<p C“.:qu (y = C%:',O VDC.
Ol\l’?/ 61"1\V(((J ﬂ(U{;m : ,‘ L,I}ﬂﬂﬂ/:{& L‘ndgpeﬂdﬂ,% ,
__/___———/A c—
p ( S
LS G oa by for 7,

Theorem (Uniqueness of Basis Representation)

If S ={v1,va,...,vp} is a basis for the vector space V then every vector in V
can be written in one, and only one, way as a linear combination of vectors in

S.

Proof

Eaistonce ! S -fr A basss ':——‘? \/,écéM 4 S, Sppm V.

- So\ LGy vegter iV v oa &'n@a,- Combiaition
of vectow n S

higaes By eV co be rpstd 45

U= QY +GV: + i + G Yp ,
gufpoje, -Ek&re Sy azM’t’f\Qr rxefy-emq‘éaélm [/Uuu hgfpo‘yl@ﬂf)
U“b:,/*('[?\/ '(‘.)"[‘L,r

Y- “ —C)V ‘f’/bz V+ +[b CP)
Hrue ~f:ar ol vectss whan b= ¢ VbeD,fJ

L. U“‘(W r—e,’yr*efén‘&{i)'m,

-,
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It is now easy enough to see the following:

If a basis for a vector space, V', contains p vectors, then any subset of V' with
more than p vectors is linearly dependent.

Similarly, any other basis that can be found will also have p vectors.

1.3 Row, Column and Null Spaces

Definition
Given a matrix, A, the row space is defined to be the subspace spanned by
the rows of A.

The column space is defined to be the subspace spanned by the columns of
A.

The null space is defined to be the subspace corresponding with the solutions
to the homogeneous equation Ax = 0.

Since we can write a matrix equation as,
Ac=b L%, Cp
= = . L
af C + ¥ &a ‘L"'W - —
=1
where the c; are the columns of A, we conclude that the system is consistent if

and only if b is in the column space of A.

Furthermore, the solution to the system can be written as the sum of a particular
solution to Ax = b and the general solution to Ax = 0.

In particular, if S = {vy1, Vs, ..., vk} is a basis for the null space of A, then the full
solution to the nonhomogeneous matrix equation is,
—

L = Ko QY Wit G Yy
B ?(i/rtl‘fvlh‘ Ya(ub(rm th ,90776

where X¢ is any solution to the equation.

Note that row operations do not affect the row or null space, however they do
affect the column space. More on this topic next week.
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